Data Acquisition Toolbox™
SDK User's Guide

MATLAB

R2019%a >) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Data Acquisition Toolbox™ SDK User’s Guide
© COPYRIGHT 2017-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

March 2017 Online only New for Version 1.1 (Release 2017a)

September 2017 Online only Revised for Version 1.1 (Release 2017b)
March 2018 Online only Revised for Version 1.2 (Release 2018a)
September 2018 Online only Revised for Version 1.2 (Release 2018b)

March 2019 Online only Rereleased for Version 1.2 (Release 2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

SDK Overview

Toolboxand Adaptor 1-2
Hardware Driver Adaptor 1-2
SDKContents 1-4
Adaptor Creation Summary 1-5
TIPS . 1-5
Explore the SDK Demo Adaptor

Demo Adaptor Description 2-2
Source Files 2-2
Class Definitions in MATLAB 2-3
Executables 2-3
Enable the Demo Adaptor 2-5
Session Workflows with the Demo Adaptor 2-6
Device Discovery and Configuration 2-6
Single Scan Inputand OQutput 2-8
Streaming Input and Output 2-10

Test the Demo Adaptor 2-13
Run Individual Tests 2-13
RunaTestSuite i i 2-14

iii

iv

Contents

Custom Adaptor Creation

3|

Create Your Adaptor from the Demo Adaptor

3-2

Edit and Build Your Adaptor 3-2

Use Your Adaptorina Session 3-4
Modify Demo Tests for Your Adaptor 3-8
Further Suggestions 3-10
Errors and Exceptions 3-12
Nonstreamingc.0i e, 3-12
Streaming 3-12
Channel Groups i, 3-14
Channel Group Description 3-14
Channel Group Restrictions 3-15
Device DiSCOVETY . . .o v e 3-15
Custom Functions i, 3-18
Vendor Adaptor Templates 3-20
Typical Workflow to Create Adaptor 3-20
Deliver Your Adaptor 3-22
Adaptor Functions for a Data Acquisition Session 3-23
Device DiSCOVELY . . .ot i vttt e e e e 3-23
Session Configuration and Single Scan Operation 3-24
Streaming 3-25
SessionReset 3-26
API Reference

Adaptor API Reference 4-2
Lifetime e 4-2
Enumeration 4-3
Hardware Management 4-7

Vendor and Device Discovery 4-8

Subsystem Discovery i 4-10
Configuration 4-16
Reservation i 4-20
Single Scans e 4-20
Streaming API Reference 4-23
Initialization and Configuration 4-23
Startand Stop 4-25
Data Availability 4-26
TransferData 4-27

S|

State Machine Diagram 5-2
Streaming Sequence Diagrams 5-4
Foreground Streaming Sequences 5-5
Sequence for Finite Foreground Input 5-5
Sequence for Finite Foreground Output 5-7
Sequence for Finite Foreground Duplex Channel 5-9
Background Streaming Sequences 5-12
Sequence for Finite Background Input 5-12
Sequence for Continuous Background Input with Stop 5-14
Sequence for Finite Background Input with Wait 5-16
Sequence for Finite Background Input with Stop Race 5-18
Sequence for Errors and Exceptions 5-21

Functions — Alphabetical List

6|

SDK Overview

* “Toolbox and Adaptor” on page 1-2
* “SDK Contents” on page 1-4
* “Adaptor Creation Summary” on page 1-5

1 SDK Overview

Toolbox and Adaptor

1-2

Hardware Driver Adaptor

The hardware driver adaptor is the interface between the data acquisition engine and the
hardware driver. The adaptor’s main purpose is to pass information between MATLAB®
and your hardware device via its driver.

MATLAB

Data Acqguisition Toolbox

_ Adaptor MEX
Session o+ * Layer

¥

Vendor
Device
Driver

Hardware drivers are provided by the device vendor. For example, to acquire data using a
National Instruments® board, the appropriate version of the driver must be installed on
your system. Hardware drivers are not installed as part of the toolbox, but a suitable
driver is usually installed on PCs that are equipped with a sound card. For any other
devices, the drivers must be installed.

See Also

See Also

Related Examples
. “Adaptor Creation Summary” on page 1-5

1-3

1 SDK Overview

SDK Contents

An installation of Data Acquisition Toolbox includes the following folders to support its
SDK. Your MATLAB installation location is referred to as matlabroot.

Folder

Description

matlabroot\toolbox\dag\dagsdk\bin
\win64

Built executable files for demo and vendor
adaptors.

matlabroot\toolbox\dag\daqgsdk
\tests\+dag\+sdk\+tests

Test files for adaptors. The installed set of
test files is for the demo adaptor.

matlabroot\toolbox\dag\dagsdk\src
\dagadaptor

Adaptor C++ source files, one folder for
each adaptor, and one other folder named
Shared for elements common to all
adaptors. DemoAdaptor contains all the
source files for the demo adaptor.
VendorAdaptor contains a set of
templates.

See Also

Related Examples

. “Adaptor Creation Summary” on page 1-5

. “Create Your Adaptor from the Demo Adaptor” on page 3-2
. “Modify Demo Tests for Your Adaptor” on page 3-8

. “Vendor Adaptor Templates” on page 3-20

Adaptor Creation Summary

Adaptor Creation Summary

This topic provides a summary of adaptor creation with the SDK. For details and examples
of these steps, see “Create Your Adaptor from the Demo Adaptor” on page 3-2.

Copy the demo adaptor or vendor adaptor source files into your working folder.
Change the names of the source files to reflect your own adaptor name.

Update the content of the source files so that the new names are used for references
to other files, the adaptor, devices, and vendor.

Update the source file functions to use your driver code. For more information, see
“Adaptor API Reference” on page 4-2.

Build the adaptor with the buildAdaptor function. Add the folder containing the
built MEX-file to your MATLAB path.

Copy the demo adaptor tests and modify them for your adaptor. Add the test package
folder to your MATLAB path.

Run the tests on your adaptor.
Deliver the finished adaptor MEX-file with your device driver and supporting files.

Tips

Update, build, and test your adaptor iteratively one step at a time. Develop and test in
small increments, proceeding upon the success of each step.

When modifying the source files, do not remove any of the functions. Even if you do
not use all the functions, they must be present when using buildAdaptor.

See Also

Related Examples

“Create Your Adaptor from the Demo Adaptor” on page 3-2
“Modify Demo Tests for Your Adaptor” on page 3-8

More About

“Vendor Adaptor Templates” on page 3-20

1-5

1 SDK Overview

. “Deliver Your Adaptor” on page 3-22

1-6

Explore the SDK Demo Adaptor

* “Demo Adaptor Description” on page 2-2

* “Enable the Demo Adaptor” on page 2-5

* “Session Workflows with the Demo Adaptor” on page 2-6
“Test the Demo Adaptor” on page 2-13

2 Explore the SDK Demo Adaptor

Demo Adaptor Description

The demo adaptor installed with Data Acquisition Toolbox consists of the files described

in the following tables.

Source Files

The demo adaptor source files are in matlabroot\toolbox\dag\dagsdk\src

\dagadaptor\DemoAdaptor.

File

Description

demoadaptor.hpp, demoadaptor.cpp

Wraps device driver code in methods that
allow you to configure, discover, and
enumerate the hardware in MATLAB.

dagstream analog.hpp,
dagstream analog.cpp,
dagstream digital.hpp,
dagstream digital.cpp

Implement DAQStream objects for an
analog and digital subsystems, that allow
you to stream data to and from the
hardware.

custom demo.cpp

Dispatches calls from MATLAB to custom
functions in the demo adaptor. At a
minimum this must contain a
customizeMap function.

In addition to these files, the demo adaptor also uses some of the source files in
matlabroot\toolbox\dag\dagsdk\src\dagadaptor\Shared:

Files

Purpose

adaptorfactory.cpp,
adaptorfactory.hpp

Create adaptor for dispatch and streaming.

dagadaptor.cpp, dagadaptor.hpp

Implement adaptor class.

dagapi.h

C interface.

daqgdatatypes.hpp

C++ equivalents of session data types.

daginterfaces.hpp

[Adaptor/IDriver, called before streaming.

daqgstream.cpp, dagstream. hpp

Transfer streaming data between MATLAB
and device driver

2-2

Demo Adaptor Description

Files

Purpose

dispatcher.cpp, dispatcher.hpp,
dispatcher common.hpp

MATLAB calls to convert data and call
adaptor functions.

fakevendordriver.hpp

Fake or virtual driver for testing and
demonstrations.

globals.h

Global settings.

mxconvert.hpp

Utility functions for data type conversions.

Class Definitions in MATLAB

The demo adaptor class definitions are in matlabroot\toolbox\dag\dagsdk\+daq\

+demoadaptor.
File Description
Session.m Defines daq.demoadaptor.Session

class.

VendorInfo.m

Defines vendor driver class for
daq.getVendor.

In addition to the files in this table, the demo adaptor also uses some of the class
definition files in matlabroot\toolbox\dag\daqsdk\+dag\+sdk.

Executables

The following demo adaptor executables are in matlabroot\toolbox\dag\daqsdk
\bin\win64.

File Description

DemoAdaptor.mexw64

Built demo adaptor.

dagasyncio.dll

Accommodates streaming channel
communication.

dagmlconverter.dll

Handles data type conversion.

2-3

2 Explore the SDK Demo Adaptor

See Also

Functions
enableDemoAdaptorDiscovery

Related Examples

. “Enable the Demo Adaptor” on page 2-5

. “Session Workflows with the Demo Adaptor” on page 2-6
. “Test the Demo Adaptor” on page 2-13

2-4

Enable the Demo Adaptor

Enable the Demo Adaptor

By default, the demo adaptor is disabled when first installed. Use the following MATLAB
command to enable it.

dag.sdk.utility.enableDemoAdaptorDiscovery

The adaptor is now ready for use. Confirm this with the command:

dag.getVendors

The output includes an entry for the demo adaptor with the vendor ID of mw:

index ID Operational Comment
1 mw true MathWorks
See Also

Functions

enableDemoAdaptorDiscovery

Related Examples

. “Demo Adaptor Description” on page 2-2
. “Session Workflows with the Demo Adaptor” on page 2-6
. “Test the Demo Adaptor” on page 2-13

2-5

2 Explore the SDK Demo Adaptor

Session Workflows with the Demo Adaptor

2-6

In this section...

“Device Discovery and Configuration” on page 2-6
“Single Scan Input and Output” on page 2-8

“Streaming Input and Output” on page 2-10

Device Discovery and Configuration

When you create a data acquisition session, it applies to a specific vendor, and allows you
to add applicable devices and channels. Discovery and configuration is part of setting up
your session. This example shows a typical session setup with the demo adaptor.

Note To enable the demo adaptor in your installation, see the instructions in “Enable the
Demo Adaptor” on page 2-5.

v = dag.getVendors
VvV =

Number of vendors: 2

index ID Operational Comment
1 ni false Click here for more info
2 mw true MathWorks

Properties, Methods, Events

Additional data acquisition vendors may be available as
downloadable support packages.

Open the Support Package Installer to install additional vendors.
d = dag.getDevices

d:

Data acquisition devices:

Session Workflows with the Demo Adaptor

index Vendor Device ID Description

1 mw MWDevO MathWorks MwW314159
2 mw MwDev1 MathWorks MwW314159
3 mw MwDev?2 MathWorks MW628318

With a listing of available vendors and devices, you can create a session and add channels
to it.

s = daq.createSession('mw"')

S =

Data acquisition session using MathWorks hardware:
Will run for 1 second (1000 scans) at 1000 scans/second.
No channels have been added.

Properties, Methods, Events

To see details about one of the devices, use its index to access the array of devices.
d(1)

mw: MathWorks MW314159 (Device ID: 'MwDevO')
Analog input subsystem supports:
3 ranges supported
Rates from 0.1 to 1000000.0 scans/sec
2 channels ('ai®', 'ail')
'Voltage', 'Current' measurement types

Analog output subsystem supports:
3 ranges supported
Rates from 0.1 to 1000000.0 scans/sec
2 channels ('ao0', 'aol')
'Voltage', 'Current' measurement types

The first and second devices are the same model, so this example uses one for input
('ai®' and the other for output ('ao0"').

chl addAnalogInputChannel(s, 'MWDevO', 'ai®', 'voltage')

chl =

Data acquisition analog input voltage channel 'ai®@' on device 'MwWDevO':

2-7

2 Explore the SDK Demo Adaptor

Coupling: DC
TerminalConfig: Differential
Range: -10 to +10 Volts
Name: "'
ID: 'aiob’
Device: [1x1 daqg.sdk.DeviceInfo]
MeasurementType: 'Voltage'

ch2

addAnalogOutputChannel(s, '"MWDevl', 'ao0', 'voltage')
ch2 =
Data acquisition analog output voltage channel 'ao0@' on device 'MwDevl':

TerminalConfig: SingleEnded
Range: -10 to +10 Volts
Name: "'
ID: 'ao0'
Device: [1x1 daqg.sdk.DeviceInfo]
MeasurementType: 'Voltage'

View the session to see the configuration.

S

s =

Data acquisition session using MathWorks hardware:
No data queued. Will run at 1000 scans/second.
Number of channels: 2

index Type Device Channel MeasurementType Range Name
1 ai MwDevO ai0 Voltage (Diff) -10 to +10 Volts
2 ao MwDevl ao0 Voltage (SingleEnd) -10 to +10 Volts

The session is now ready to send and receive single scans or streams of data.

Single Scan Input and Output

A single scan is when you send an output or read input from the channels at one moment
in time. The data transfer is handled by the adaptor MEX layer. For the demo adaptor this
is contained in the MEX-file matlabroot\toolbox\dag\dagsdk\bin
\win64\DemoAdaptor.mexw64, which provides the functionality shown in the following
diagram.

Session Workflows with the Demo Adaptor

MATLAB

Data Acquisition Toolbox

Adaptor MEX
Session Dispatcher Layer

DAG
Adaptor

Vendor
Adaptor

¥

Vendor
Device
Driver

To generate a single scan analog output of 1.25V, enter the following code.
outputSingleScan(s,1.25)

DemoDriver output: 1.25

To read a single scan of analog input:

data = inputSingleScan(s)

With only one input channel, this returns only a single value. If you add more analog input
channels to the session, inputSingleScan returns a vector, with an element for each
channel.

ch3 = addAnalogInputChannel(s, 'MWDev2', 'ai@', 'voltage');
data = inputSingleScan(s)

2-9

2 Explore the SDK Demo Adaptor

2-10

data =
0 200

Remove channels from the session you no longer need.

removeChannel(s,[1 2 3]);

Streaming Input and Output

Streaming involves a sequence of input or output data on each channel, typically a
waveform, comprised of many scans. Streaming can be accomplished in the foreground
(blocking MATLAB until the stream is complete), or in the background (running
asynchronously while MATLAB continues). Streaming might involve more scans or
samples than the device memory can hold. For these reasons, the toolbox uses streaming
channels to accommodate data flow. This allows data to be sent and received without
causing a memory overflow, and without interrupting MATLAB.

Session Workflows with the Demo Adaptor

MATLAB

Data Acquisition Toolbox

Adaptor MEX
Session Dispatcher Layer

DAQ
Adaptor '
Streaming -
Channel i " dagStreams Vendor
Adaptor
k.
Vendor
Device
Oriver

Use MWDev?2 to generate a 100 Hz sine wave in the background for 10 seconds. The

default sample rate is 1000 scans per second; that amounts to 1000 cycles for 10,000
samples.

ch4

addAnalogOutputChannel(s, '"MWDev2', 'aol', 'voltage')

ch4 =
Data acquisition analog output voltage channel 'aol' on device 'MwWDev2':

TerminalConfig: SingleEnded
Range: -10 to +10 Volts
Name: "'
ID: 'aol'
Device: [1x1 daq.sdk.DeviceInfo]
MeasurementType: 'Voltage'

2-11

2 Explore the SDK Demo Adaptor

2-12

Y = sin(linspace(0,2*pi*1000,10000))"' % 1000 cycles for 10000 samples;
queuelQutputData(s,Y);
s

S =
Data acquisition session using MathWorks hardware:
Will run for 10000 scans (10 seconds) at 1000 scans/second.

Number of channels: 1
index Type Device Channel MeasurementType Range Name

1 ao MWDev2 aol Voltage (SingleEnd) -10 to +10 Volts

The session display now indicates the number of queued scans, and how long it will run to
output all the data. You can start the output.

startBackground(s)
s.IsRunning

logical
1

pause(10)
s.IsRunning

logical

0

See Also

Functions
enableDemoAdaptorDiscovery

Related Examples

. “Demo Adaptor Description” on page 2-2
. “Enable the Demo Adaptor” on page 2-5
. “Test the Demo Adaptor” on page 2-13

. “Channel Groups” on page 3-14

Test the Demo Adaptor

Test the Demo Adaptor

In this section...
“Run Individual Tests” on page 2-13
“Run a Test Suite” on page 2-14

Run Individual Tests

A collection of tests is available for testing functionality of the demo adaptor. These are all
contained in the subfolders of matlabroot\toolbox\dag\dagsdk\tests\+dag\+sdk
\+tests. Each test file name begins with the letter t and has the extension .m.

To get help and information on running an individual test, use the MATLAB help command
with the full package and test name. For example, to learn about the test defined in
matlabroot\toolbox\dag\dagsdk\tests\+dag\+sdk\+tests\+workflow
\tinputsinglescan.m, type:

help daq.sdk.tests.workflow.tinputsinglescan
As indicated in the display help, you can run this test with the following commands:
t = dag.sdk.tests.workflow.tinputsinglescan;

results = run(t);
table(results)

Running daq.sdk.tests.workflow.tinputsinglescan

Done daq.sdk.tests.workflow.tinputsinglescan

Name Passed Failed Incomplete
'daq.sdk.tests.workflow.tinputsinglescan/verifyInputSingleScan' true false false
'daq.sdk.tests.workflow.tinputsinglescan/verifyInputSingleScanLoop' true false false

Tip When modifying functionality in your custom adaptor, you should also modify the
corresponding test. Be sure that the test runs as expected before moving on to your next

modification.

2-13

2 Explore the SDK Demo Adaptor

2-14

Run a Test Suite

You can run all the tests in a package folder using the runtests function. For example,
to run all the tests contained in dagq\+sdk\+tests\+workflow, use the following
commands:

results = runtests('daq.sdk.tests.workflow', 'Verbosity', 'Concise');
table(results)

Name Passed Failed
'daq.sdk.tests.workflow.tbackground/verifyAnalogInputSession' true false
'daq.sdk.tests.workflow.tbackground/verifyAnalogOutputSession' true false
'daq.sdk.tests.workflow.tbackground/verifyAnalogInputContinuous' true false
'daq.sdk.tests.workflow.tbackground/verifyAnalogOutputContinuous' true false

To run a suite of tests that includes all subpackages of a specific package, use the
"IncludeSubpackages' option in the runtests function call. The following code runs
all tests below the tests package:

results = runtests('daq.sdk.tests', 'IncludeSubpackages',true, 'Verbosity', 'Concise');
table(results)

Tip Run your complete modified test suite when all your individual updates are
implemented and built.

See Also

Functions
enableDemoAdaptorDiscovery | run | runtests

Related Examples

. “Demo Adaptor Description” on page 2-2

. “Enable the Demo Adaptor” on page 2-5

. “Create Your Adaptor from the Demo Adaptor” on page 3-2
. “Modify Demo Tests for Your Adaptor” on page 3-8

Incomplete

false
false
false
false

Custom Adaptor Creation

* “Create Your Adaptor from the Demo Adaptor” on page 3-2

* “Modify Demo Tests for Your Adaptor” on page 3-8

* “Errors and Exceptions” on page 3-12

* “Channel Groups” on page 3-14

* “Custom Functions” on page 3-18

* “Vendor Adaptor Templates” on page 3-20

* “Deliver Your Adaptor” on page 3-22

» “Adaptor Functions for a Data Acquisition Session” on page 3-23

3 custom Adaptor Creation

Create Your Adaptor from the Demo Adaptor

Use the demo adaptor as a template for creating a custom adaptor which you can build,
test, and access from the toolbox. The following sections provide a sequence of steps for
adaptor modification. The examples in this topic create a custom adaptor named
MyAdaptor with a vendor ID of my.

Edit and Build Your Adaptor

This section describes the step to make a new custom adaptor based on the shipped demo
adaptor. This example modifies only the names of the adaptor, vendor, and devices,
without any functional changes. You build the custom adaptor in a local folder, then add
the build folders to the MATLAB path. This section uses two folder locations throughout:

Location Description

matlabroot MATLAB installation location. This is the
MATLAB used both for the building of the
adaptor, and for accessing the adaptor
through a data acquisition session.

C:\adaptors\daqgsdk Local file location where the new adaptor is
modified and built.

1 Create the build area in a location of your choice. This example works with a new
folder, C:\adaptors\daqgsdk. Create a subfolder here called src, and within that a
subfolder named dagadaptor.

2 Copy the folder DemoAdaptor from matlabroot\toolbox\dag\dagsdk\src
\dagadaptor into C:\adaptors\daqsdk\src\dagadaptor.

3 Inside C:\adaptors\dagsdk\src\dagadaptor, rename the folder DemoAdapter
to be MyAdaptor.

Navigate into MyAdaptor, and rename three of its files according to the following

table:
Original Name New Name
custom _demo.cpp custom my.cpp
demoadaptor.cpp myadaptor.cpp

3-2

Create Your Adaptor from the Demo Adaptor

Original Name

New Name

demoadaptor.hpp

myadaptor.hpp

With a text editor, modify each of the three new files in the previous table, replacing
all occurrences of text DemoAdaptor, demoadaptor, DemoDriver, and
custom_demo.cpp with MyAdaptor, myadaptor, MyDriver, and custom my.cpp,
respectively, keeping the letter capitalization style with each replacement.

Further edit the contents of myadaptor. cpp as shown in the following table:

Original Text Updated Text
{ {
shortName = "MW"; shortName = "MY";
fullName = "MathWorks"; fullName = "MyAdaptor";
driverName = "DemoAdaptor"; driverName = "MyDriver";
return DAQSuccess; return DAQSuccess;
} }
prefix = "MwWDev"; prefix = "MyDev";
DAQStatus MyDriver::inputSingleSca HeGhemn i 0ariowgoIndienp i
{ {
deviceManager ->inputSingleScap/(graelindEManatema)->inputSingleSca
return DAQSuccess; data.push back(1.125);
} data.push back(2.250);
return DAQSuccess;
}

The last row of this table causes the inputSingleScanImpl function to return hard
data, rather than calling the driver function to read data.

With these modifications saved and in place, you are ready to build the adaptor.
In MATLAB, run the following utility to build the executable MEX-file for MyAdaptor:

daq.sdk.utility.mex.buildAdaptor('MyAdaptor', 'custom my"', ...
'C:\adaptors\dagsdk\src\dagadaptor\MyAdaptor"', 'C:\adaptors\daqgsdk\bin\win64")

The function input arguments specify the adaptor name, source code file, source file

location, and where to put the built output.

Note The buildAdaptor function requires that your system be configured with

Microsoft® Visual Studio® 2013 or later.

3-3

DepflaSdeam
(groupInd

3 custom Adaptor Creation

3-4

7 Create the folder C:\adaptors\daqgsdk\+daq, and copy into it the folder

+demoadaptor found at matlabroot\toolbox\daq\daqgsdk\+dag\
+demoadaptor.

8 Navigate into C:\adaptors\daqsdk\+daqg, and rename +demoadaptor to

+myadaptor.

9 Navigate into C:\adaptors\daqsdk\+dag\+myadaptor, and edit these two
MATLARB files in that folder:

Session.m
VendorInfo.m

* In both of these files, replace all occurrences of the texts DemoAdaptor and
demoadaptor with MyAdaptor and myadaptor, respectively, keeping the letter
capitalization style with each replacement.

* Inthe VendorInfo file, use % characters to comment out the lines that hide the
adaptor, between the begin and end remove indicators. The change looks like this:
BEGIN REMOVE

if daq.internal.getOptions().HideDAQSDKAdaptor
throw(MException(message('dagsdk:HardwareInfo:VendorIsHidden', mfilename('class'))));

o o° o° o°

end
% END REMOVE

» Save and close the files.

Your modified adaptor is now ready for use.

Use Your Adaptor in a Session

This example shows how to access the vendor and device represented by your modified
adaptor. A data acquisition session with your adaptor allows you to add channels and get
information from the device.

Start MATLAB, and use the following commands to make your adaptor available.

addpath 'C:\adaptors\dagsdk\bin\win64'
addpath 'C:\adaptors\daqgsdk'

Then you can access your adaptor.

\

daq.getVendors
vV =

Number of vendors: 2

Create Your Adaptor from the Demo Adaptor

index ID Operational Comment
1 ni false Click here for more info
2 my true MyAdaptor

Use the index of the vendor ID my to get more information.
vendor = v(2)
vendor =
Data acquisition vendor 'MyAdaptor':
ID: 'my'
FullName: 'MyAdaptor'’
AdaptorVersion: '3.13 (R2018a)'

DriverVersion: '1.0.0'
IsOperational: true

Create a session for your device.

s = daq.createSession('my"')

s =

Data acquisition session using MyAdaptor hardware:

Will run for 1 second (1000 scans) at 1000 scans/second.
No channels have been added.

Add an analog input channel to the session, associated with the device MyDev0, channel
aio.
chl = addAnalogInputChannel(s, '"MyDevO', 'ai0', 'Voltage')
chl =
Data acquisition analog output voltage channel 'ao®' on device 'MyDev0':
TerminalConfig: SingleEnded

Range: -10 to +10 Volts

Name: "'

ID: 'ao0'

Device: [1x1 daq.sdk.DeviceInfo]
MeasurementType: 'Voltage'

Add a second analog input channel.

ch2 = addAnalogInputChannel(s, 'MyDev0O', 'ail', 'Voltage');

View the session to see the channel configurations.

S

3 custom Adaptor Creation

3-6

S =

Data acquisition session using MyAdaptor hardware:
Will run for 1 second (1000 scans) at 1000 scans/second.
Number of channels: 2

index Type Device Channel MeasurementType Range Name
1 ai MyDev0O ail Voltage (Diff) -10 to +10 Volts
2 ai MyDevO ail Voltage (Diff) -10 to +10 Volts

Examine the objects so far in the base workspace.

whos
Name Size Bytes Class Attributes
chl 1x1 8 daqg.sdk.AnalogInputVoltageChannel
ch2 1x1 8 daqg.sdk.AnalogInputVoltageChannel
s 1x1 8 daqg.myadaptor.Session
% 1x2 16 daq.VendorInfo
vendor 1x1 8 daqg.myadaptor.VendorInfo

With the example data hard coded into the adaptor inputSingleScanImpl function, you

can execute a single scan measurement on the session channels.
data = inputSingleScan(s)

data

1.1250 2.2500

You can also read streaming input data, in this case provided by the demo adaptor
DAQstream object. The session default configuration captures 1000 scans in 1 second.

stdata = startForeground(s);
whos stdata

Name Size Bytes C(lass Attributes
stdata 1000x2 16000 double

stdata contains a column of 1000 samples for each channel. View the first six rows.
stdata(1l:6,:)

0 0.2500
0.2487 0.4987
0.4818 0.7318
0.6845 0.9345

See Also

0.8443 1.0943
0.9511 1.2011

When you are finished, delete the session and clear the objects.

delete(s)
clear v vendor s chl ch2

See Also

Functions
buildAdaptor

Related Examples
. “Modify Demo Tests for Your Adaptor” on page 3-8

More About
. “Adaptor Creation Summary” on page 1-5
. “Adaptor Functions for a Data Acquisition Session” on page 3-23

3 custom Adaptor Creation

Modify Demo Tests for Your Adaptor

3-8

This topic describes how to copy demo adaptor tests and modify them for use with your
own adaptor. The steps below assume you have an adaptor called MyAdaptor, as created
in the example of “Create Your Adaptor from the Demo Adaptor” on page 3-2.

1

Copy matlabroot\toolbox\dag\dagsdk\tests to C:\adaptors\dagsdk
\tests

In a file browser, navigate to the SDK tests package folder C:\adaptors\daqgsdk
\tests\+dag\+sdk.

Rename the folder +tests to +mytests.

The next steps require you to edit and save your test files. You can use the MATLAB
editor; or any editor of your choice. Because the tests are MATLAB files, using the
MATLAB editor is recommended for debugging purposes.

Navigate to C:\adaptors\dagsdk\tests\+dag\+sdk\+mytests, and open the
file hardwareconfiguration.m. In MATLAB you can navigate to its folder and
open the editor:

cd ('C:\adaptors\dagsdk\tests\+dag\+sdk\+mytests"')
edit hardwareconfiguration

Change the vendor and device parameters in this manner, using your own names.

Original Text Updated Text

% HardwareInfo % HardwareInfo
VendorName = 'mw'; VendorName = 'my';
VendorFullName = 'MathWorks'; VendorFullName = 'MyAdaptor';
DeviceIDl = 'MWDevO'; DeviceIDl = 'MyDev0';
DeviceID2 = 'MWDevl'; DevicelID2 = 'MyDevl’;
DeviceID3 = 'MWDev2'; DevicelID3 = 'MyDev2';

Save and close the file.

The updated vendor information now allows your tests to run on your adaptor.

Modify all files in C:\adaptors\daqgsdk\tests\+dag\+sdk\+mytests\
+workflow\ so that all lines use mytests instead of tests. For example,

classdef tbackground < daq.sdk.mytests.workflow.BaseDAQSessionWorkflowTester

Modify Demo Tests for Your Adaptor

Restart MATLAB. Use the following commands to add your adaptor and tests to the
command path.

addpath 'C:\adaptors\dagsdk\bin\win64'
addpath 'C:\adaptors\dagsdk'
addpath 'C:\adaptors\dagsdk\tests'

Run the test for single scan inputs.
t = dag.sdk.mytests.workflow.tinputsinglescan;

results = run(t);
table(results)

Running daq.sdk.mytests.workflow.tinputsinglescan

Done daq.sdk.mytests.workflow.tinputsinglescan

ans =

2x6 table
Name Passed Failed Incomplete Durat
'daq.sdk.mytests.workflow.tinputsinglescan/verifyInputSingleScan' true false false 1.69
'daq.sdk.mytests.workflow.tinputsinglescan/verifyInputSingleScanLoop' true false false 1.294

For streaming tests, there are three files to modify in the folder C:\adaptors
\dagsdk\tests\+dag\+sdk\+mytests\+development\+streaming.

Modify tstreambasic.m using your own vendor and device information, as follows:

Original Text Updated Text

properties(TestParameter) properties(TestParameter)
VendorName = {'mw'}; % Add| vendor AtaplonNanene= hig'me.'}; % Add| vendor ad
DeviceID = {'MWDevl'}; % Add deviceDeiDicgiil wifsMyevEe'sy; r?emf.d device

end end

Modify both tstreamread.m and tstreamwrite.m using your own adaptor
information, as follows:

Original Text Updated Text

properties (ClassSetupParameter) |[properties (ClassSetupParameter)
adaptorName = {'DemoAdaptor'} adaptorName = {'MyAdaptor'}

end end

3-9

3 custom Adaptor Creation

3-10

Original Text Updated Text

'toolbox', 'daq', 'dagsdk', 'bin', computer('arch'));

adaptorPath = fullfile(matlabroot,|adaptorPath = 'c:\adaptors\dagsdk\

bin\win64'

You can now run any of the streaming tests on your adaptor. For example, restart
MATLAB and enter the following code:

addpath 'C:\adaptors\dagsdk\bin\win64'

addpath 'C:\adaptors\dagsdk'

addpath 'C:\adaptors\dagsdk\tests'

t = dag.sdk.mytests.development.streaming.tstreamread;
results = run(t);

table(results)

Running daq.sdk.mytests.development.streaming.tstreamread

8x6 table

Name

'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIFiniteRead(scanRate=valuel, num

(
'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIFiniteRead(
(

scanRate=valuel, num

'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIFiniteRead(scanRate=value2, num
'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIFiniteRead(scanRate=value2, num
'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIContinuousRead(scanRate=valuel
'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIContinuousRead(scanRate=valuel
'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIContinuousRead(scanRate=value2
'daq.sdk.mytests.development.streaming.tstreamread[adaptorName=MyAdaptor]/VerifyAIContinuousRead (scanRate=value2

Further Suggestions

Run Test Suites

You can run the full suite of tests for your adaptor by specifying the package folder to use

all the tests contained in it.

results = runtests('daq.sdk.mytests', 'IncludeSubpackages', true, 'Verbosity', 'Concise');
table(results)

Modify Functionality Tests

As you write your adaptor, you must modify the test files to correspond to the
functionality implemented for your device. In deciding the sequence in which you

See Also

implement and test functionality, consider “Session Workflows with the Demo Adaptor”
on page 2-6.

* In addition to adaptor name, you must modify where applicable the vendor name,
device driver name, device names, vendor ID, etc.

See Also

Functions
run | runtests

Related Examples
. “Test the Demo Adaptor” on page 2-13
. “Create Your Adaptor from the Demo Adaptor” on page 3-2

3-11

3 custom Adaptor Creation

Errors and Exceptions

3-12

Nonstreaming

To indicate that a standard SDK function has resulted in an error for an expected reason,
return the appropriate error code (as opposed to DAQSuccess), as provided in include/
dagsdktypes.h.

To indicate that a custom SDK function has resulted in an error, throw a DAQDiagnostic
(see daginterfaces. hpp) containing a custom error code and a diagnosis message
string.

To indicate that a standard SDK function has resulted in an error for a reason that is
specific to the function of the custom adaptor (vendor-specific error), throw a
DAQDiagnostic.

You can define a custom error code as a negative value less than

dagsdk: :DAQErr_ReservedRangeEnd (see dagsdktypes.h). while a custom warning
code can be defined as a positive value greater than

dagsdk: :DAQWrn_ReservedRangeEnd.

Streaming

To indicate that an error has occurred during the configuration of the stream
(configureStream), return a custom error code. You should also implement the
DAQStreamAnalog: :getDiagnosticFromStatus, which when given a custom error
code, returns a string describing the error condition.

To indicate that an error has occurred during streaming (that is, after the stream has

started but before it is done or has stopped), return a custom error code or throw an
exception.

See Also

Related Examples
. “Create Your Adaptor from the Demo Adaptor” on page 3-2

See Also

More About

. “Adaptor API Reference” on page 4-2
. “Streaming API Reference” on page 4-23
. “Sequence for Errors and Exceptions” on page 5-21

3-13

3 custom Adaptor Creation

Channel Groups

3-14

In this section...

“Channel Group Description” on page 3-14
“Channel Group Restrictions” on page 3-15

“Device Discovery” on page 3-15

Channel Group Description

A simplified view of a DAQ device is that actual devices provide channels with common
functions, logically grouped into subsystems. For example, all channels that provide
analog input data may be thought of as belonging to an analog input subsystem.

Another view of this DAQ device is as a provider and consumer of data. The largest unit of
data that can be acquired or generated simultaneously, by one or more channels, is a
scan. The logical grouping that acquires or consumes one or more scans of data is a
channel group. The definition of the channel group is usually constrained by the driver
and hardware. For example, when all channels belonging to a single analog input
subsystem also share a single clock.

A channel group is an aggregation of channels, usually of the same subsystem, which
operate together. For example, all the analog output subsystem channels on a device must
be configured, reserved, and act together to generate data as a single scan.

You should define channel groups in a way that reflects the driver constraints, and
provide a means for identifying all channels belonging to the group for acquiring and
generating scans. Typically, channel groups provide functions to stream data to or from a
device buffer.

Each channel on the device has a unique address, defined by device, subsystem, and
channel ID. Each channel must be assigned to one channel group. The following diagram
illustrates one possible channel group arrangement. In this scenario, analog output (AO)
channels 0 and 1 might serve a different purpose than AO channels 2 and 3; while analog
input (AI) channels 0-3 are used all together.

Channel Groups

DAQ Device

AD Al
0|1|2|3 0|1|2(3
e e AN s
Gp1 Gp2 Gp3

For reference information on the functions used in configuring channel groups, see
“Hardware Management” on page 4-7.

Channel Group Restrictions

* All channels in a group operate together. This allows synchronized streaming to the
extent supported by the hardware.

* A channel cannot belong to more than one group.
* All channels in a group are requested, reserved, and released together.

* By default, a channel group—and therefore all its channels—can be accessed by only
one data acquisition session at a time. You cannot add channels to a session if any
other channels in their groups are already added to a different session. If your driver
allows a group to be accessed by different sessions, you can control this behavior
using the isRegistrationReservationImpl function.

Device Discovery

Device discovery occurs by calling daq.getDevices in a MATLAB session. Part of
discovery is enumeration, whereby all devices and channels are indexed. The result of
enumeration is a set of channel group handles, which the adaptor uses to address
channels on the numerous devices of the session.

A channel group usually includes all the channels of one subsystem of one device, as
shown in the following diagram. But other configurations are possible. For example, a

3-15

3 custom Adaptor Creation

channel group could include all channels of all subsystems in a single device, or all
channels of the same type of subsystem across several devices.

Driver
DAQ Device 1 DAQ Device N
51 52 51 52
CNC2 - [Cn CNCE - [Cn CHC2 - [Cn CC2 - [Cn
¥ _ ¥ ¥ ¥ ¥ ¥
Channel addr) |4 es]] =l 9] I
[Absolute index)
Channel *
i EE] e =2l =[5 =
Channel group | 1 | 2 | 3 | |
index
Channel group z *
hpkir [CG | CG | CG3 | |

This diagram illustrates the process of enumeration performed during daq.getDevices.
Through the driver, the adaptor accesses the numerous supported devices, and
determines their subsystems and channels. The adaptor then derives an absolute (unique)
index for each channel, and assigns each to a channel group. Each channel group has an
index, and a resulting unique channel group handle. Through these handles, the adaptor
performs the operations of a data acquisition session.

3-16

See Also

You can create handles to any of the possible objects in your configuration, such as
devices, channels, and subsystems, but the adaptor templates provided with Data
Acquisition Toolbox use only channel group indices.

See Also

More About

. “Vendor Adaptor Templates” on page 3-20

. “Adaptor API Reference” on page 4-2

. “Streaming API Reference” on page 4-23

. “Streaming Input and Output” on page 2-10
. “Streaming Sequence Diagrams” on page 5-4

3-17

3 custom Adaptor Creation

Custom Functions

3-18

Custom functionality provided by your adaptor that is not part of the standard session-
based interface can be exposed to MATLAB via the DAQ SDK custom interface. For
example, your device might provide an on-board power supply.

Note This topic assumes experience writing MEX-files.

To add a custom function, first review the custom functions available in the demo adaptor
in the folder matlabroot\matlab\toolbox\dag\dagsdk\+dag\+demoadaptor\
+custom. The installed files in this folder are:

testHasInputsHasOutputs.m
testHasInputsNoQutputs.m
testNoInputsNoOutputs.m
testThrowCustomExceptions.m

Use these steps to create your own custom function:

Add a function to the MyDriver class (MyDriver::customFunction).

Add a function to the MyAdaptor class (MyAdaptor: : customFunction) that calls
MyDriver::customFunction with the designated:

* Inputs

* Qutputs

* Custom error code

3 Update custom my.cpp to:

* Define a function to call (dispatch) the custom adaptor function
MyAdaptor::customFunction.

* Update the customizeMap function to add:

functionMap["myCustomFunction"] = customFunction;

where customFunction is the name of the MEX-function that calls
MyAdaptor::customFunction, and myCustomFunction is the name of
function in MATLAB.

4 Define your custom MATLAB function myCustomFunction.min the +daq\

+myadaptor\+custom subpackage for your adaptor.

See Also

* Choose the appropriate template from \+daq\+demoadaptor\+custom\ to copy
and rename.
* Has Inputs, Has Outputs
* Has Inputs, No Outputs
* No Inputs, No Outputs

* Rename the file to perform the desired function, for example,
myCustomFunction.m.

* Edit myCustomFunction.mto

¢ Update: functionName = 'myCustomFunction';
* Provide the inputs to the function as a structure.

For functionality that is not part of the standard session interface, contact MathWorks®
technical support at https://www.mathworks.com/support/contact us to let us
know what functionality you need.

See Also

More About

. “C Matrix API” (MATLAB)

. “Vendor Adaptor Templates” on page 3-20
. “Errors and Exceptions” on page 3-12

. “Deliver Your Adaptor” on page 3-22

3-19

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

3 custom Adaptor Creation

Vendor Adaptor Templates

The Data Acquisition Toolbox SDK is installed with a set of source file stubs for an adaptor
called VendorAdaptor. The source files are installed in the folder:

matlabroot\toolbox\dag\dagsdk\src\dagadaptor\VendorAdaptor

The basic components and structure of the source files for this adaptor are the same as
those in the DemoAdaptor. If you need to create an adaptor from scratch, it is
recommended that you use a copy of the VendorAdaptor source files. The following
table indicates the purpose of each source file.

File Description

vendoradaptor.hpp, Wraps device driver code in methods that allow you

vendoradaptor.cpp to configure, discover, and enumerate the hardware
in MATLAB.

dagstream analog.hpp, Implements a DAQStream object for an analog

dagstream analog.cpp subsystem, that allows you to stream data to and
from the hardware.

custom vendor.cpp Dispatches custom calls from MATLAB to the adaptor.
At a minimum this must contain a customizeMap
function.

Typical Workflow to Create Adaptor

To create an adaptor from the set of template files in the folder VendorAdaptor, use the
following steps. Assume that you want to name the adaptor MyAdaptor.

1 Create a copy of the entire folder, and name it MyAdaptor.
2 Working in the new folder called MyAdaptor, change the names of the files:

Original Name New Name

vendoradaptor. hpp myadaptor.hpp
vendoradaptor.cpp myadaptor.cpp
custom _vendor.cpp custom _my.cpp

3 Update the content of the files so that the new names are used for references to other
files, the adaptor, devices, and vendor.

3-20

See Also

4 Update the functions to use your driver code. For more information, see “Adaptor API

Reference” on page 4-2.
5 Build the adaptor with the buildAdaptor function.

See Also

Related Examples
. “Create Your Adaptor from the Demo Adaptor” on page 3-2

More About
. “Adaptor Creation Summary” on page 1-5
. “Custom Functions” on page 3-18

3-21

3 custom Adaptor Creation

Deliver Your Adaptor

When you have a custom adaptor for delivery, you can create a toolbox to deliver the
adaptor MEX-file along with your device driver and any other support files, such as
documentation, data files, examples, and so on.

You should document any adaptor behavior that involves:

» Differences from standard data acquisition session behavior
* Custom functions

For information on creating and distributing a toolbox, see “Toolbox Distribution”
(MATLAB).

For creating and delivering documentation to support your toolbox, see “Display Custom
Documentation” (MATLAB).

For your custom examples, see “Display Custom Examples” (MATLAB).

3-22

Adaptor Functions for a Data Acquisition Session

Adaptor Functions for a Data Acquisition Session

In this section...

“Device Discovery” on page 3-23

“Streaming” on page 3-25

“Session Reset” on page 3-26

“Session Configuration and Single Scan Operation” on page 3-24

This topic lists the adaptor and streaming functions that need to be implemented for each

stage and operation of a session lifetime.

Device Discovery

Device discovery is accomplished with the daq.getDevices function. Implement the

following adaptor functions for this task.

Adaptor Functions

Notes

initImpl

enumerateDevicesImpl
commitDevicesImpl
getOrder0fChannelAdditionImpl

Devices — Identify devices for driver.

enumerateSubsystemsImpl
commitSubsystemsImpl

Device Subsystems — Repeated for each
device.

enumerateChannelsImpl
commitChannelsImpl

Subsystem Channels — Repeated for each
subsystem of each device.

getChannelGroupIndexImpl

Channel Index — Repeated for each
channel of each subsystem.

getFirmwareVersionImpl

getVendorInfoImpl Vendor Information — Get the vendor
getDriverVersionImpl information and driver information.
getDeviceInfoImpl Device Information — Get the device

information. Repeated for each device.

3-23

3 custom Adaptor Creation

3-24

Adaptor Functions

Notes

getSubsystemsOfTypeImpl
getMeasurementTypesImpl
getDefaultMeasurementTypeImpl
getCouplingsImpl
getDefaultCouplingImpl
getSampleTypesImpl
getDefaultSamplingTypeImpl
getNativeDataTypeImpl
getRateLimitImpl
getResolutionImpl
getTerminalConfigsImpl
getRangesAvailableForTerminalConfigImpg
getRangesAvailableForTerminalConfigImpg
getDefaultTerminalConfigImpl
isOnDemandOperationSupportedImpl
getChannelNamesImpl

Analog Input — Repeated for each device
with an analog input subsystem.

— —

getSubsystemsOfTypeImpl
getMeasurementTypesImpl
getDefaultMeasurementTypeImpl
getNativeDataTypeImpl
getRateLimitImpl
getResolutionImpl
getTerminalConfigsImpl
getRangesAvailableForTerminalConfigImpg
getDefaultTerminalConfigImpl
isOnDemandOperationSupportedImpl
getChannelNamesImpl

Analog Output — Repeated for each
device with an analog output subsystem.

—

getSubsystemsOfTypeImpl
getMeasurementTypesImpl
getDefaultMeasurementTypeImpl
getRateLimitImpl
isOnDemandOperationSupportedImpl
getDigitalChannelTypesImpl

getChannelNamesImpl

Digital Input/Output — Repeated for each
device with a digital input/output
subsystem.

Session Configuration and Single Scan Operation

The session configuration controls which devices and channel settings you use for data
input and output. For each of the following data acquisition session functions, implement

the corresponding adaptor functions.

Adaptor Functions for a Data Acquisition Session

Session Function

Adaptor Functions

Notes

addAnalogInputChannel |addChannelImpl Repeated for each channel
getGroupRateLimitsImpl |added to the session.

addAnalogOutputChanne |setRateImpl

1 getRateImpl

addDigitalChannel

removeChannel removeChannelImpl

getGroupRateLimitsImpl

session.Rate

unreserveChannelGroupImpl

Set the session Rate

setRateImpl property value.
getRateImpl

inputSingleScan inputSingleScanImpl

outputSingleScan outputSingleScanImpl

prepare isDeviceAvailableImpl
reserveChannelGroupImpl

release unreserveChannelGroupImpl

Streaming

Streaming uses DAQStream objects for transferring data between the session and the
device driver. The session configuration is necessary to support streaming.

Implement the following functions for the adaptor or stream objects, as indicated in the

notes.

Session Function

Source Functions

Notes

queuelQutputData

No adaptor stream function.

3-25

3 custom Adaptor Creation

Session Function Source Functions Notes
startForeground makeStream Implemented in
initialize dagstream* code. See
startBackground terminate “Streaming API Reference”
conflggreSt ream on page 4-23 and
unconfigureStream L —
registerCallbacks Di g qd 54
unregisterCallbacks lagrams- o page J-<.
prestart
start
stop
getNumInputScansAvailableg
getNumScansOutputByHardwgre
getOutputBufferSize
flushOutputBuffer
isDeviceDone
read
write
readWrite
stop stop Session function used for
stopping background
operation.
Session Reset
Session Function Adaptor Functions Notes
daqgreset releaseChannelsImpl Repeated for all channels.
releaseSubsystemsImpl |Repeated for all subsystems.
releaseDevicesImpl Repeated for all devices.
termImpl Terminate sessions.
See Also
More About

. “Create Your Adaptor from the Demo Adaptor” on page 3-2

3-26

See Also

“Adaptor API Reference” on page 4-2
“Streaming API Reference” on page 4-23

3-27

APl Reference

* “Adaptor API Reference” on page 4-2
* “Streaming API Reference” on page 4-23

4 API Reference

Adaptor APl Reference

This topic provides an overview of each function included in the demo adaptor source file,
demoadaptor. cpp, grouped in the following categories. The vendoradaptor.cpp
template includes similar functions.

In this section...

“Lifetime” on page 4-2

“Enumeration” on page 4-3

“Hardware Management” on page 4-7
“Vendor and Device Discovery” on page 4-8
“Subsystem Discovery” on page 4-10
“Configuration” on page 4-16
“Reservation” on page 4-20

“Single Scans” on page 4-20

Lifetime
Lifetime functions include those that involve the loading and unloading of the driver
interface.

initimpl

Syntax DAQStatus DemoDriver::initImpl()

Purpose Initialize and load implementation of daqsdk: : IDriver interface
Inputs None

Output None

Return status DAQErr Driver Init on failure.

DAQSuccess on success.
termimpl
Syntax DAQStatus DemoDriver::termImpl()

4-2

Adaptor API Reference

Purpose Terminate and unload implementation of dagsdk: : IDriver
interface

Inputs None

Output None

Return status

DAQErr Driver Term on failure.

DAQSuccess on success.

Enumeration

Enumeration functions involve the recognition of devices, subsystems, and channels.

enumerateDevicesimpl

Syntax DemoDriver::enumerateDevicesImpl(Index &deviceCount)
const

Purpose Enumerate devices available via vendor driver

Inputs None

Output Number of the devices enumerated

Return status

DAQErr Driver EnumerateDevices on failure.

DAQSuccess on success.

commitDevicesIimpl

Syntax DemoDriver::commitDevicesImpl(Index deviceCount)

Purpose Inform the driver that the enumerated devices are to be committed,
in enumerated order, for use by the adaptor

Inputs Number of devices enumerated

Output None

Return status

DAQErr Driver CommitDevices on failure.

DAQSuccess on success.

4-3

4 API Reference

enumerateSubsystemsimpl

Syntax DemoDriver: :enumerateSubsystemsImpl(Index
deviceIndex, Index &subsystemCount) const

Purpose Enumerate the subsystems available via for a given device

Inputs Index of the given device

Output Number of the subsystems enumerated

Return status

DAQErr Driver EnumerateSubsystems on failure.

DAQSuccess on success.

commitSubsystemsimpl

Syntax DemoDriver::commitSubsystemsImpl(Index devicelndex,
Index subsystemCount)

Purpose Inform the driver that the enumerated subsystems, for a given device,
are to be committed, in enumerated order, for use by the adaptor

Inputs Index of the given device, number of the subsystems enumerated

Output None

Return status

DAQErr Driver CommitSubsystems on failure.

DAQSuccess on success.

enumerateChannelsimpl

Syntax DemoDriver: :enumerateChannelsImpl(Index deviceIndex,
Index subsystemIndex, Index &channelCount) const

Purpose Enumerate the channels available via for a given subsystem and
device

Inputs Index of the given device, the index of the given subsystem

Output Number of the channels enumerated

Return status

DAQErr Driver EnumerateChannels on failure.

DAQSuccess on success.

4-4

Adaptor API Reference

commitChannelsimpl

Syntax DemoDriver::commitChannelsImpl(Index devicelndex,
Index subsystemIndex, Index channelCount)

Purpose Inform the driver that the enumerated channels, for a given device
and subsystem, are to be committed, in enumerated order, for use by
the Adaptor

Inputs Index of the given device, the index of the given subsystem, the
number of channels enumerated

Output None

Return status

DAQErr Driver CommitChannels on failure.

DAQSuccess on success.

getChannelGroupindeximpl

Syntax DemoDriver: :getChannelGroupIndexImpl(Index
devicelndex, Index subsystemIndex, Index
channellndex, Index &channelGroupIndex) const

Purpose Return the channel group index corresponding to a specified channel

Inputs Index of the specified device, index of the specified subsystem, index
of the specified channel

Output Channel group index

Return status

DAQErr Driver GetChannelGroupIndex on failure.

DAQSuccess on success.

determineOrderOfChannelAdditionimpl

Syntax DemoDriver: :getOrder0OfChannelAdditionImpl(daqsdk: :0rd
er0fChannelsInGroup &orderOfChannelsInGroup) const

Purpose Return an enumeration representing the order in which channels
indices are sorted, by the driver, in channel groups

Inputs None

Output Order of channels within channel groups

4 API Reference

Return status

DAQErr Driver OrderOfChannelAddition on failure.

DAQSuccess on success.

Channel groups contain a list of channels ordered first by device, then by subsystem, and
finally by channel. The group must acquire data from requested channels either in the
listed order ("Sorted") or in the order requested ("InOrderOfAddition"). For example, if
the group contains four channels and a user requests channels 4, 2, and 1, they should
expect data from the channel group either in the order 4, 2, 1 (the order in which the
channels were added) or in the order 1, 2, 4 (sorted). See “Channel Groups” on page 3-14.

releaseDevicesimpl

Syntax DemoDriver::releaseDevicesImpl(Index deviceIndex)
Purpose Release the resources committed by the driver for a specified device
Inputs Index of the device resources to release

Output None

Return status

DAQErr Driver ReleaseDevices on failure.

DAQSuccess on success.

releaseSubsystemsimpl

Syntax DemoDriver: :releaseSubsystemsImpl(Index deviceIndex,
Index subsystemIndex)

Purpose Release the resources committed by the driver for a specified
subsystem and device

Inputs Index of the device resources to release, index of the subsystem
resources to release

Output None

Return status

DAQErr Driver ReleaseSubsystems on failure.

DAQSuccess on success.

4-6

Adaptor API Reference

releaseChannelsimpl

Syntax DemoDriver: :releaseChannelsImpl(Index deviceIndex,
Index subsystemIndex, Index channellndex)

Purpose Release the resources committed by the driver for a specified channel
of a subsystem of a device

Inputs Index of the device resources to release, index of the subsystem
resources to release, index of the channel resources to release

Output None

Return status

DAQErr Driver ReleaseChannels on failure.

DAQSuccess on success.

Hardware Management

Hardware management functions control the configuration of channel groups.

addChannellmpl

Syntax DemoDriver::addChannelImpl(Index deviceIndex, Index
subsystemIndex, Index channellndex)

Purpose Register the specified channel with its channel group

Inputs Index of the device, index of the subsystem for given device, index of
the channel for the given subsystem

Output None

Return status

DAQErr Driver AddChannel on failure.

DAQSuccess on success.

removeChannelimpl

Syntax

DemoDriver: : removeChannelImpl(Index deviceIndex,
Index subsystemIndex, Index channellIndex)

Purpose

Unregister the specified channel from its channel group

Inputs

Index of the device, index of the subsystem for given device, index of
the channel for the given subsystem

4 API Reference

4-8

Output

None

Return status

DAQErr Driver RemoveChannel on failure.

DAQSuccess on success.

reserveChannelGroupimpl

Syntax DemoDriver: :reserveChannelGroupImpl(ChannelGroupIndex
groupIndex)

Purpose Reserve the specified channel group and all its resources

Inputs Index of the channel group

Output None

Return status

DAQErr Driver ReserveChannelGroup on failure.

DAQSuccess on success.

unreserveChannelGroupimpl

Syntax DemoDriver: :unreserveChannelGroupImpl(ChannelGroupInd
ex groupIndex)

Purpose Unreserve/release the specified channel group and all its resources

Inputs Index of the channel group

Output None

Return status

DAQErr Driver UnreserveChannelGroup on failure.

DAQSuccess on success.

Vendor and Device Discovery

These functions retrieve information about vender and device.

getDriverVersionimpl

Syntax DemoDriver: :getDriverVersionImpl(uint32 T &major,
uint32 T &minor, uint32 T &patch) const
Purpose Return driver version number

Adaptor API Reference

Inputs

None

Output

Major version number, minor version number, patch version number

Return status

DAQErr Driver GetDriverVersion on failure.

DAQSuccess on success.

getVendorinfolmpl

Syntax DemoDriver: :getVendorInfoImpl(std::string &shortName,
std::string &fullName, std::string &driverName) const

Purpose Return relevant vendor information (name and driver-name)

Inputs None

Output Vendor shortname (typically used as a vendor ID), vendor fullname,

driver name (including full path)

Return status

DAQErr Driver GetVendorInfo on failure.

DAQSuccess on success.

getDevicelnfolmp

Syntax DemoDriver: :getDeviceInfoImpl(Index deviceIndex,
std::string &model, std::string &prefix, std::string
&id, std::string &serialNumber, bool
&isRecognizedDevice) const

Purpose Return relevant device information

Inputs Index of the device

Output Device model, device prefix (e.g., 'Dev', 'Audio’, etc.), device ID,

device serial number, indication of whether the driver recognizes and
supports the device

Return status

DAQErr Driver GetDeviceInfo on failure.

DAQSuccess on success.

4-9

4 API Reference

getFirmwareVersionimpl

Syntax DemoDriver::getFirmwareVersionImpl(Index deviceIndex,
uint32 T &major, uint32 T &minor, uint32 T &patch)
const

Purpose Return firmware version number

Inputs None

Output Major version number, minor version number, patch version number

Return status DAQErr Driver GetFirmwareVersion on failure.

DAQSuccess on success.

Subsystem Discovery

These functions retrieve information about the subsystem.

getSubsystemsOfTypelmpl

Syntax

DemoDriver: :getSubsystemsOfTypeImpl(Index
devicelndex, IndexList &subsystemIndices,

daqgsdk: :Subsystem subsystemType,

daqsdk: :TransferDirection transferDirection) const

Purpose

Return subsystems of a given type (Analog, Digital, etc.) and direction
(Input, Output)

Inputs

Index of the device, subsystem type, transfer direction

Output

List of subsystem indices with the given type/direction or empty if no
matches are found

Return status

DAQErr Driver GetSubsystemsOfType on failure to execute the
request (but not when no subsystems are found).

DAQSuccess on success.

4-10

Adaptor API Reference

getMeasurementTypesimpl

Syntax DemoDriver: :getMeasurementTypesImpl(Index
deviceIndex, Index subsystemIndex,
std::vector<daqdatatypes: :MeasurementType>
&measurementTypes) const

Purpose Return the measurement types supported by a specified subsystem
and device

Inputs Index of the device, index of the subsystem

Output List of measurement types supported by the specified subsystem

Return status

DAQErr Driver GetMeasurementTypes on failure to execute the
request (but not when no subsystems are found).

DAQSuccess on success.

getDefaultMeasurementTypelmpl

Syntax DemoDriver: :getDefaultMeasurementTypeImpl(Index
deviceIndex, Index subsystemIndex,
daqdatatypes: :MeasurementType
&defaultMeasurementType) const

Purpose Return the default measurement type supported by a specified
subsystem and device

Inputs Index of the device, index of the subsystem

Output Default measurement types supported by the specified subsystem

Return status

DAQErr Driver GetDefaultMeasurementType on failure.

DAQSuccess on success.

getRateLimitimpl

Syntax DemoDriver::getRateLimitImpl(Index deviceIndex, Index
subsystemIndex, daqdatatypes::RateLimit &ratelLimit)
const

Purpose Return the rate limits supported by a specified subsystem and device

Inputs Index of the device, index of the subsystem

4-11

4 API Reference

4-12

Output

Rate limits supported by the specified subsystem

Return status

DAQErr Driver GetRatelLimit on failure.

DAQSuccess on success.

getResolutionimp

Syntax DemoDriver: :getResolutionImpl(Index deviceIndex,
Index subsystemIndex, uint8 T &resolution) const

Purpose Return the measurement resolution supported by a specified
subsystem and device

Inputs Index of the device, index of the subsystem

Output Measurement resolution supported by the specified subsystem

Return status

DAQErr Driver GetResolution on failure.

DAQSuccess on success.

getTerminalConfigsimpl

Syntax DemoDriver::getTerminalConfigsImpl(Index deviceIndex,
Index subsystemIndex,
std::vector<daqdatatypes::TerminalConfiguration>
&terminalConfigurations) const

Purpose Return the terminal configurations supported by a specified
subsystem and device for each channel

Inputs Index of the device, index of the subsystem

Output Terminal configurations supported by the specified subsystem

Return status

DAQErr Driver GetTerminalConfigs on failure.

DAQSuccess on success.

getRangesAvailableForTerminalConfigimpl

Syntax

DemoDriver::getRangesAvailableForTerminalConfigImpl (I
ndex devicelIndex, Index subsystemIndex,
daqgdatatypes::TerminalConfiguration terminalConfig,
std::vector<daqdatatypes: :Range> &ranges) const

Adaptor API Reference

Purpose Return ranges supported by specified terminal configuration for
subsystem and device

Inputs Index of the device, index of the subsystem, terminal configuration
type

Output Ranges supported by the specified terminal configuration for a given

subsystem

Return status

DAQErr Driver GetRangesAvailableForTerminalConfig on
failure.

DAQSuccess on success.

getDefaultTermin

alConfigsimpl

Syntax DemoDriver::getDefaultTerminalConfigsImpl(Index
devicelndex, Index subsystemIndex,
std::vector<daqdatatypes::TerminalConfiguration>
&defaultTerminalConfigs) const

Purpose Return the default terminal configuration types supported by a
specified subsystem and device

Inputs Index of the device, index of the subsystem

Output Default terminal configuration types supported by the specified

subsystem

Return status

DAQErr Driver GetDefaultTerminalConfigs on failure.

DAQSuccess on success.

isOnDemandOperationSupportedimpl

Syntax DemoDriver: :isOnDemandOperationSupportedImpl(Index
devicelndex, Index subsystemIndex, bool &isSupported)
const

Purpose Indicate whether on-demand operations are supported by a specified
subsystem and device

Inputs Index of the device, index of the subsystem

Output Whether on-demand operations are supported by the specified

subsystem

4-13

4 API Reference

4-14

Return status

DAQErr Driver IsOnDemandOperationSupported on failure.

DAQSuccess on success.

getCouplingsimpl

Syntax DemoDriver: :getCouplingsImpl(Index deviceIndex, Index
subsystemIndex, std::vector<dagdatatypes::Coupling>
&couplings) const

Purpose Return the couplings supported by a specified subsystem and device

Inputs Index of the device, index of the subsystem

Output Couplings supported by the specified subsystem

Return status

DAQErr Driver GetCouplings on failure.

DAQSuccess on success.

getDefaultCouplingimpl

Syntax DemoDriver: :getDefaultCouplingImpl(Index deviceIndex,
Index subsystemIndex, dagdatatypes::Coupling
&defaultCoupling) const

Purpose Return the default coupling supported by a specified subsystem and
device

Inputs Index of the device, index of the subsystem

Output Default coupling supported by the specified subsystem

Return status

DAQErr Driver GetDefaultCoupling on failure.

DAQSuccess on success.

getSampleTypesimpl

Syntax DemoDriver: :getSampleTypesImpl(Index deviceIndex,
Index subsystemIndex,
std::vector<daqdatatypes::SampleType> &sampleTypes)
const

Purpose Return the sample types supported by a specified subsystem and

device

Adaptor API Reference

Inputs

Index of the device, index of the subsystem

Output

Sample types supported by the specified subsystem

Return status

DAQErr Driver GetSampleTypes on failure.

DAQSuccess on success.

getDefaultSampli

ngTypelmpl

Syntax DemoDriver: :getDefaultSamplingTypeImpl(Index
devicelndex, Index subsystemIndex,
dagdatatypes::SampleType &defaultSampleType) const

Purpose Return the default sample type supported by a specified subsystem
and device

Inputs Index of the device, index of the subsystem

Output Default sample type supported by the specified subsystem

Return status

DAQErr Driver GetDefaultSamplingType on failure.

DAQSuccess on success.

getDigitalChanne

ITypesimpl

Syntax DemoDriver: :getDigitalChannelTypesImpl(Index
deviceIndex, Index subsystemIndex,
std::vector<daqdatatypes: :MeasurementType>
&channelMeasurementTypes) const

Purpose Return the digital channel type supported by a specified subsystem
and device

Inputs Index of the device, index of the subsystem

Output Vector of measurement types for the channels of the specified

subsystem

Return status

DAQErr Driver GetDigitalChannelTypes on failure.

DAQSuccess on success.

4-15

4 API Reference

4-16

getChannelNamesimpl

Syntax DemoDriver: :getChannelNamesImpl(Index deviceIndex,
Index subsystemIndex, std::vector<std::string>
&channelNames) const

Purpose Return the channel names supported by a specified subsystem and
device

Inputs Index of the device, index of the subsystem

Output Channel names supported by the specified subsystem

Return status

DAQErr Driver GetChannelNames on failure.

DAQSuccess on success.

Configuration

Configuration functions control rates, ranges, and coupling.

getRatelmpl

Syntax DemoDriver::getRateImpl(ChannelGroupIndex groupIndex,
daqgsdk: :float64 &rate) const

Purpose Return the rate supported by a specified channel group in its current
configuration

Inputs Index of the group

Output Rate supported by the specified channel group

Return status

DAQErr Driver GetRate on failure.

DAQSuccess on success.

setRatelmpl

Syntax DemoDriver: :setRateImpl(ChannelGroupIndex groupIndex,
daqgsdk: :float64 rate)

Purpose Set the rate for a specified channel group in its current configuration

Inputs Index of the group, rate

Adaptor API Reference

Output

None

Return status

DAQErr Driver SetRate on failure.

DAQSuccess on success.

getChannelCouplingimpl

Syntax DemoDriver: :getChannelCouplingImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex,
daqgdatatypes::Coupling &coupling) const

Purpose Return the channel coupling of a specified channel for a given
subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel

Output Coupling supported by the specified channel

Return status

DAQErr Driver GetChannelCoupling on failure.

DAQSuccess on success.

setChannelCoupli

ngimpl

Syntax DemoDriver: :setChannelCouplingImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex, std::string
coupling)

Purpose Set the channel coupling of a specified channel for a given subsystem
and device

Inputs Index of the device, index of the subsystem, index of the channel

Output None

Return status

DAQErr Driver SetChannelCoupling on failure.

DAQSuccess on success.

getChannelTerminalConfigimpl

Syntax

DemoDriver::getChannelTerminalConfigImpl(Index
devicelndex, Index subsystemIndex, Index
channellndex, daqdatatypes::TerminalConfiguration
&terminalConfig) const

4-17

4 API Reference

Purpose Return the terminal configuration of a specified channel for a given
subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel

Output Terminal configuration supported by the specified channel

Return status

DAQErr Driver GetChannelTerminalConfig on failure.

DAQSuccess on success.

setChannelTerminalConfigimpl

Syntax DemoDriver: :setChannelTerminalConfigImpl(Index
devicelndex, Index subsystemIndex, Index
channelIndex, std::string terminalConfig)

Purpose Set the terminal configuration of a specified channel for a given
subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel

Output None

Return status

DAQErr Driver SetChannelTerminalConfig on failure.

DAQSuccess on success.

getChannelRangelmpl

Syntax DemoDriver::getChannelRangeImpl(Index deviceIndex,
Index subsystemIndex, Index channelIndex,
dagdatatypes::Range &range) const

Purpose Return the range of a specified channel for a given subsystem and
device

Inputs Index of the device, index of the subsystem, index of the channel

Output Range supported by the specified channel

Return status

DAQErr Driver GetChannelRange on failure.

DAQSuccess on success.

4-18

Adaptor API Reference

setChannelRangelmpl

Syntax DemoDriver::setChannelRangeImpl(Index deviceIndex,
Index subsystemIndex, Index channellndex,
daqdatatypes: :Range range)

Purpose Set the range of a specified channel for a given subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel

Output None

Return status

DAQErr Driver SetChannelRange on failure.

DAQSuccess on success.

getChannelDirectionimpl

Syntax DemoDriver: :getChannelDirectionImpl(Index
deviceIndex, Index subsystemIndex, Index
channelIndex, daqdatatypes::ChannelDirection
&direction) const

Purpose Return the direction of a specified digital channel for a given
subsystem and device

Inputs Index of the device, index of the subsystem, index of the channel

Output Channel direction for specified channel.

Return status

DAQErr Driver_ GetChannelDirection on failure.

DAQSuccess on success.

setChannelDirectionimpl

Syntax DemoDriver: :setChannelDirectionImpl(Index
deviceIndex, Index subsystemIndex, Index
channellndex, std::string direction)

Purpose Set the direction of a specified digital channel for a given subsystem
and device

Inputs Index of the device, index of the subsystem, index of the channel,
direction of the channel specified as "Input" or "Qutput"

Output None

4-19

4 API Reference

Return status DAQErr Driver SetChannelDirection on failure.

DAQSuccess on success.

Reservation
Reservation functions query device and channel availability.

isDeviceAvailablelmpl

Syntax DemoDriver::isDeviceAvailableImpl(Index deviceIndex,
bool &isDeviceAvailable) const

Purpose Return whether or not a specified device is still available, connected,
committed, and enumerated

Inputs Index of the device

Output Return whether or not the device is available as previously committed

and enumerated

Return status DAQErr Driver IsDeviceAvailable on failure.

DAQSuccess on success.

isRegistrationReservationimpl

Syntax DemoDriver::isRegistrationReservationImpl(Index
devicelndex, bool &isReservation) const

Purpose Return whether or not registering a channel in a channel group
reserves the channel group

Inputs Index of the channel group

Output Return whether or not “registration is reservation.” (See “Channel

Groups” on page 3-14.)

Return status DAQErr Driver IsRegistrationReservation on failure.

DAQSuccess on success.

Single Scans

Single scan functions acquire or generate a static scan of data.

4-20

See Also

inputSingleScan

Syntax DemoDriver: :inputSingleScanImpl(ChannelGroupIndex
groupIndex, DataScan &data) const

Purpose Acquire a scan of data for all channels registered with a channel
group

Inputs None

Output Acquired scan of data

Return status

DAQErr Driver InputSingleScan on failure.

DAQSuccess on success.

OutputSingleScan

Syntax DemoDriver: :outputSingleScanImpl(ChannelGroupIndex
groupIndex, DataScan &&outputData) const

Purpose Generate a scan of data for all channels registered with a channel
group

Inputs Data to generate output

Output None

Return status

DAQErr Driver OutputSingleScan on failure.

DAQSuccess on success.

See Also

Related Examples
. “Create Your Adaptor from the Demo Adaptor” on page 3-2

More About

. “Errors and Exceptions” on page 3-12

. “Channel Groups” on page 3-14

. “Streaming API Reference” on page 4-23

4-21

4 API Reference

. “Custom Functions” on page 3-18

4-22

Streaming API Reference

Streaming API Reference

In this section...

“Initialization and Configuration” on page 4-23
“Start and Stop” on page 4-25
“Data Availability” on page 4-26

“Transfer Data” on page 4-27

Streaming is used in the generation or acquisition of clocked data to allow asynchronous
operation that does not block MATLAB. Stream channels accommodate the flow of data
separately from the session-dispatcher route. This also allows data sets that might exceed
the size of the memory on the device.

The following functions are defined in the analog streaming source file

dagstream analog.cpp. Corresponding functions for digital I/O streaming are defined
in dagstream digital.cpp.

Initialization and Configuration

makeStream

Syntax static DAQStream* makeStream(...)
Purpose Factory method to create channel group stream.
Inputs Fixed signature

Output Pointer to DAQStream

Usage notes Use as shown in dagstream _analog.cpp.
initialize

Syntax int64 T DAQStreamAnalog::initialize()
Purpose Initialize channel group after constructor.
Inputs None

Output None

4-23

4 API Reference

4-24

terminate

Syntax int64 T DAQStreamAnalog::terminate()

Purpose Terminate DAQ stream prior to its destruction.

Inputs None

Output None

configureStream

Syntax int64 T DAQStreamAnalog::configureStream()

Purpose Configure group of channels on the DAQ device driver for streaming
operation.

Inputs None

Output None

unconfigureStream

Syntax int64 T DAQStreamAnalog::unconfigureStream()

Purpose Unconfigure groups of channels when DAQStream channel is closed
from MATLAB.

Inputs None

Output None

registerCallbacks

Syntax int64 T DAQStreamAnalog::registerCallbacks()

Purpose Register any callback handlers required by DAQ device driver
following configureStream.

Inputs None

Output None

unregisterCallbacks

Syntax

int64 T DAQStreamAnalog::unregisterCallbacks()

Streaming API Reference

Purpose Unregister immediately prior to unconfigureStream any callback
handlers registered with DAQ device driver.

Inputs None

Output None

Start and Stop

prestart

Syntax int64 T DAQStreamAnalog::prestart()

Purpose Called on a per-run basis prior to the streaming operation start,

typically to reset scan counters.

Inputs None

Output None

start

Syntax int64 T DAQStreamAnalog::start()

Purpose Start the streaming operation for the given channelGroupHandle.
Inputs None

Output None

stop

Syntax int64 T DAQStreamAnalog::stop()

Purpose Stop the streaming operation for the given channelGroupHandle.
Inputs None

Output None

4-25

4 API Reference

Data Availability

getNumlInputScansAvailable

Syntax

int64 T
DAQStreamAnalog: :getNumInputScansAvailable(uint64 T&
numScansAcquired)

Purpose

Query the number of input scans available to be read by a read or
readWrite call.

Inputs

None

Output

Number of scans.

getNumScansOutputByHardware

Syntax

int64 T
DAQStreamAnalog: :getNumScansOutputByHardware (uint64 T
& numScansGenerated)

Purpose

Query the number of scans output by the hardware by a write or
readWrite call.

Inputs

None

Output

Number of scans.

getOutputBufferSize

Syntax int64 T
DAQStreamAnalog: :getOutputBufferSize(uint64 T&
outputBufferSize)
Purpose Query the DAQ device output buffer size in number of scans.
Inputs None
Output Buffer size in scans.
flushOutputBuffer
Syntax int64 T DAQStreamAnalog::flushOutputBuffer()
Purpose Empty the output buffer.

4-26

Streaming API Reference

Inputs

None

Output

None

isDeviceDone

Syntax int64 T DAQStreamAnalog::isDeviceDone(bool& isDone)
Purpose Poll the vendor driver immediately following a call to stop.

Inputs None

Output True if device is done streaming.

Transfer Data

read

Syntax int64 T DAQStreamAnalog::read(float64 * const
pReadBuffer, uint64 T numReadScans)

Purpose Read acquired data from the DAQ device into the read buffer.

Inputs pReadBuffer: buffer used by stream to store input data acquired
from the device.
numReadScans: number of scans to copy into the provided buffer.

Output None

Notes The stream is responsible for the lifetime of the buffer.

write

Syntax int64 T DAQStreamAnalog::write(float64 const * const
pWriteBuffer, uint64 T numWriteScans)

Purpose Write data from the buffer to the device for output generation.

Inputs pWriteBuffer: buffer used by stream to store output data to be
generated by the device.
numWriteScans: number of valid scans to copy from the provided
buffer.

Output None

4-27

4 API Reference

4-28

Notes The stream is responsible for the lifetime of the buffer.
readWrite
Syntax int64 T DAQStreamAnalog::readWrite(float64* const

pRead§uffer, uint64 T numReadScans, float64 const *
const pWriteBuffer, uint64 T numWriteScans)

Purpose Simultaneously read and write data between the buffers and a DAQ

device duplex channel.

Inputs pReadBuffer: buffer used by stream to store input data acquired

from the device.
numReadScans: number of scans to copy into the provided buffer.

pWriteBuffer: buffer used by stream to store output data to be
generated by the device.

numWriteScans: number of valid scans to copy from the provided

buffer.
Output None
Notes The stream is responsible for the lifetime of the buffer.

See Also

Related Examples

“Create Your Adaptor from the Demo Adaptor” on page 3-2

More About

“Errors and Exceptions” on page 3-12
“Channel Groups” on page 3-14

“Streaming Input and Output” on page 2-10
“State Machine Diagram” on page 5-2
“Streaming Sequence Diagrams” on page 5-4

See Also

“Adaptor API Reference” on page 4-2
“Custom Functions” on page 3-18

4-29

State and Sequence Diagrams

» “State Machine Diagram” on page 5-2

* “Streaming Sequence Diagrams” on page 5-4

* “Foreground Streaming Sequences” on page 5-5

* “Background Streaming Sequences” on page 5-12

* “Sequence for Errors and Exceptions” on page 5-21

5 state and Sequence Diagrams

State Machine Diagram

This composite diagram shows the state machine for input, output, and duplex channels.

Q new | UninitializedState term
hegin
init
InitializedState
open (numOutputChannels == 0) ’ open (numOutputChannels = 0)
Input only close Ot ¥ Duplex
ReadyState HeedOutputDataState

primeOutputBuffer

start

RunningState ‘

allZcansTransferred
stop

WaitingForDoneState

done

| WaitingForStopState
stop (numOutputChannels == 0) | | =top (numOutputChannels = 0)

5-2

See Also

See Also

More About

. “Streaming API Reference” on page 4-23
. “Foreground Streaming Sequences” on page 5-5
. “Background Streaming Sequences” on page 5-12

5-3

5 state and Sequence Diagrams

Streaming Sequence Diagrams

These sequence diagrams provide details of timing for streaming functionality. They
might be useful for debugging code during development of your adaptor.

“Foreground Streaming Sequences” on page 5-5
“Background Streaming Sequences” on page 5-12
“Sequence for Errors and Exceptions” on page 5-21

Foreground Streaming Sequences

Foreground Streaming Sequences

This topic includes sequence diagrams for finite analog input and output in the
foreground.

In this section...

“Sequence for Finite Foreground Input” on page 5-5
“Sequence for Finite Foreground Output” on page 5-7

“Sequence for Finite Foreground Duplex Channel” on page 5-9

Sequence for Finite Foreground Input

This diagram shows the timing sequence for a finite (fixed-size) analog input in the
foreground. It demonstrates the interfaces between a DAQ session, AsynclO channel, and
a DAQ stream when a user is performing finite foreground clocked acquisitions using the
session interface.

3-5

5 state and Sequence Diagrams

[i) |

2 addAnalogihputChannel I fransterDirecton
! lispaling
3t _ — [lnuminputchamnels
4 new. — | |[numCutputChannels
5. ini
& addistener(inputStream, Datariten)
7: addistenerasyncioChannel, Custor) | |plocksize
| |scanRate
| |numberofscans
I iscontinious
& startForeground 17
H P
9 open ! - !
e i
10 configureStream !
11 register Calloac
regtercalbacts In the case of output operatians,
the order of cals i as folows:
(1) prestart
(2) primeOutputBuffer
12: InpuSiream flush (e
(4) stop
13: execute("start") -7
14 prestart” |
16: whie(~isDone) 15 start
T
17: periodicTimer whie(-alScansfransferred)
|
|
|

18 gethiuminputScansAvaiable

19: read(pData, Nx blockSize)

20: CustomEvert(‘Datalritten”)

21: stop

o
i
WatingF o JonesState} I

I

i
22 periodicTimer while(~isDeng) |
i
i
i

23: isDeviceDone

24: CustomEvent{'Done")

WatingForStop = true

25: execute("stop")

26: close 27: unregisterCallbacks

28: unconfigureStream

28: clear

30: term

3: term

32: delete

33 delete(tis)

e

5-6

Foreground Streaming Sequences

Sequence for Finite Foreground Output

This diagram shows the timing sequence for a finite (fixed-size) analog output in the
foreground. It demonstrates the interfaces between a DAQ session, AsynclO channel, and
a DAQ stream when a user is performing finite foreground clocked signal generation
using the session interface.

5-7

5 state and Sequence Diagrams

1: createSession(ni)

2 addAnslogOutputChannel

7: queueCutpuData

& startForeground

34 clear

{UnintiaiZeastate} hanneiGrouptiande
! | _isPolin
- ! _ — =~ ruminputchannels
anew — — | InumOutptiChannels
5t
blockize
scankate
nunherOfSeans
6 addistener (asyncioChannel, Custom) L Jiscortiuous
- The output buffer size may depend on
r - , hence caled
! - “after” confioureStream Usedlto throtle
& open - output cata wtes.
B3
11 getOutputBufferSize
12 registerCalbacis
NesdOutrDatastat
14 asyncioChannel OutputStream write(dstaBlock)
15 executeCprimeOUpuBufter”)
16 prestart
17 ATLAB u\‘
Inthe case of output cperations,
18 write{pData, numScansToTranser) [pEEase Bt o e o
() rimeOutpuBufer
@ start
~ | _wsten
{Readybtate)
18 execute('start’) -7
20 gtart ~
21 whi(-isDone)
22 periodicTmer whie(~aliScansTransferre
23 getNumScansOutpuByHardware_ |
24 CustomEvert("ScansGeneratedt)
25 wite(pData, Nx biockSizs)
2 stop
attng:)
27 periodicTimer whi(~isDone) |
25 isDeviceDons H
28 CustomEvert("Done’)
WatingForsiop e
o ptate}
30 execute('stop’)
3t: close
32 unregterCalbacks
33 unconfigureStream
35 tem
36 tem
a7 delete
38 delete(ris)

-

Foreground Streaming Sequences

Sequence for Finite Foreground Duplex Channel

This diagram shows the timing sequence for a finite (fixed-size) simultaneous analog input
and output in the foreground. It demonstrates the interface between a DAQ session and
the AsynclO channel when a user is performing a finite input/output operation using the
session interface

5-9

5 state and Sequence Diagrams

1: createSession(n) |
1 createSession(nf)

-

2 acdAnalogOutputchannel

{Unintiadedstate)

| chameiGrouptiandle

isPoling
numinpuiChannels.

& queusOUpData

9 stariForeground

' mOuipuChammels
3 int | -
st
6 Dstadrtten’
7 ‘custom)]
biocisize L
iz¢ may depend on
B he sream configuration,hence caled
H Usedtototte
' output deta wrtes.
10 open ! N J
N]
" - !
>
2
13 regsterCalbacks
14 for
Meed
Inthe case of ot operctions
e order of cals 15 a5 folows:
15: asynciaChannel OutputShream wris(dataBlock) resta 1
(@) primeCupuufter 1
5 btart !
) stop |
16 exeoue(primeOUpBuer") . |
17 prestart 1
/
18 fomATLAB D
/
/ |
18 readWrte(ruilpr, 0, pData, umScansTaTransfer) !
/
’
{Readyirate) , !
20 exeaute('star’) ’ '
2: shart i
22 whik(-isbone)
23 periodcTimer whis(-alScansTransferred)

24

|

TLAB 22

25 gethlumS cansOutpuiByHardware

26: CustomEvert()

28 asynciochannel OuptutStream writs(dataBlock)

30 CustomEvent("Datariten

blocs:

Nk blockSize)

31: stop.

34 CustomEvent("Done’)

)

32: periodicTimer whie(~isDone)

33: isDeviceDone:

‘WatingForstop =rue

35 execute('stop")

3. close.

39 clear

37: unvegisterCalbacks

unconfigureStream

40 term

5-10

41 term

42 delete

43: deleteithis)

See Also

See Also

More About

. “Streaming API Reference” on page 4-23
. “State Machine Diagram” on page 5-2
. “Background Streaming Sequences” on page 5-12

5-11

5 state and Sequence Diagrams

Background Streaming Sequences

This topic includes sequence diagrams for analog input and output in the background.

In this section...

“Sequence for Finite Background Input” on page 5-12

“Sequence for Continuous Background Input with Stop” on page 5-14
“Sequence for Finite Background Input with Wait” on page 5-16
“Sequence for Finite Background Input with Stop Race” on page 5-18

Sequence for Finite Background Input

This diagram shows the timing sequence for a finite (fixed-size) analog input in the
background. It illustrates the interface between a DAQ session and the AsynclO channel
when a user is performing a finite background clocked acquisition using a the session

interface.

5-12

Background Streaming Sequences

1 iy |

2: addistener(DataAvalable’)

3: addAnaloginptChannel

9. statBackground

Order of arrival of DataAvailable
lto MATLAB is guarantesd by
MATLAB being single threaded

Session should not be caling
"drawnow' or "pause’ whie
acquiring data.

{UninitializedState

be issued from Session.

If user deletes this listener while acquiring data, data
~{will sil be acquired, but with no callaack
(publishisubscribe mode) to process the deta,

This i valid syntax, and no warnings or errors would

4 int

channeIGroupHandl
ftransferDirection
isPoling
| ~jnuminputchannels
- RUmOUtpUChaNNEls
5 new—
6 intt

7 addistener(inputStream, Dataliitten)

6 addistener(asyncioChannel, ‘Custom’)

10: open

11: configureStredin

12: registerCalibacks

13 InputStream.flush

14 execute("start’)

15 prestart

16 start

~
20: CustomEvent; DatelWiitten’)

31: clear

= 7
17: periodicTimer while{-aliScans:

19: read(pData, N blockSize)

22: stop

H

{WattingFofoneState}

25! CustomEvert(‘Done")

WatingForStop = true

|
23 pericdicTimer while(~isDone]
|
|

24: isDeviceDone

26 execute("stop")

27: while(~inputSteam.isDateDone)

28: close

29 unregisterCalboacks

30 unconfigureStream

32 term

33 term

e

34: delete !

35 deletethis)

blockSize
scanRate
numherofScans
isContinuous

This loop is over all scans actualy
acquired or actually generated by
the DAQ device

Acquired)

5 state and Sequence Diagrams

5-14

Sequence for Continuous Background Input with Stop

This diagram shows the timing sequence for a continuous analog input in the background,
with a stop request while the device is acquiring data. It illustrates the interface between
a DAQ session and the AsynclIO channel when a user is performing a continuous
background clocked acquisition, then calls stop while data is being acquired.

Background Streaming Sequences

| 1 iy |

2 addistener(DataAvalable’) {UnintializedState

channelGroupHandie
fransferDirection
—lisPoling

i)
numOUtpuChannels

3: addanaloghputChannel !
4 int i

Snew_ _ -

& init

7 addistener(inputStream, DatalVrtten')

blockSize
scanRate
numberOfScans
isCortinuous.

& addistener(asynciochannel, ‘Custom’)

9. statBackground

10: open i

-
11: configureStream

12: registerCalbacks

13 InpuiStream. flush

14; execute(”

art”)

15: prestart

16: start

]

|
17: periodicTimer while(~aliScans{ransferred)

18

15 read(pData, Nx blockSize)

21: D 20 Dataitten

25 b 22 Dataitten
24 stop

25 Dataitten

26 DataAvaiable 27 executestop)

28 stop
29 whie(-inputStream isDataDone)

30: isDeviceDone I

31: periodTimer whie(~isDone)

32: CustomEvert('Done")

WaitingForStop = false

33 close
34 unregister Callbacks
35 uncanfigureStream
36: clear 37: term \
36 term |
1
39 delete !

40 deletethis)

-1
-1

5-15

5 state and Sequence Diagrams

Sequence for Finite Background Input with Wait

This use case revisits the finite background acquisition, when all scans have been
acquired and the background operation is naturally stopping, and at the same time, the
user issues a stop command while the DAQ AsynclO plugin is in the
“WaitingForDoneState.”

5-16

Background Streaming Sequences

| 1 iy |

2: ad

ener(Datavailable') {UniniializedState}

| ehannelGroupHandie

3: addanaloghputChannel

4 inkt transferDirection
Snew _ _ — gisoling
& init fpUiChanne

7. addistener(inputStream, Datalritten’) |

& addlistener(asyncioChannel, ‘Custom’)

9 stantBackground .
10 open

11: confiaurStream

12: registerCalbacks

13: InputStream flush

14 execute("start")

-

15 prestart

16: start

17 periodicTimer while(~aliSeansTransferred)

18 gethuminpLUtSCansAvalable |
19: read(pData, Nx blockSize)
20: Dataitten
21: DataAvalakle
22: DatalAwitien
23 DataAvalable
250, 24: Dataitten
26 stop
T
I
WaitingFoyGonestate !
27. periodTimer whilk(~isDone) 1
I
I
26 stop !
29 execute("stop") 30 isDeviceD |
31: CustomEventy Donz"
WattingFor Stop = true
Watting
32: execute("stop’)
33 ignored
e — — Flanored -
34: close 35 unregisterCalbacks
36 unconfigurestream
37: clear 36 term
39 term
I
40 delete
1. delete(ihis)
|
I
I

5-17

5 state and Sequence Diagrams

Sequence for Finite Background Input with Stop Race

This situation revisits the finite background acquisition, when all scans have been
acquired and the background operation is naturally stopping, and at the same time, the
user issues a stop command while the DAQ AsynclO plugin is in the last iteration of the

“RunningState.”

5-18

Background Streaming Sequences

1 iy

2: ad

ener(Datavailable')

3: addanaloghputChannel

9. statBackground

4 int

7 addistener(inputStream, DatalVrtten')

{UnintializedState } |

snew

& init

channelGroupHandie
fransferDirection
isPaling

numinpuiChannels
Aputchannel

6 addistener{asyncioChannel, ‘Custom’)

10: open

L

13: InputStream flush

biockSize
scanRate

14 execute("start’

20; DatalVriten

23: DataAvaiable

22 Datalriten

26: DataAvailable

24: DataVritten

28: stop

35: clear

{WattingFofoneState}

2% execute("stop")

31: CustomEvert("Done")

WaltingForStop = false

32 close

" — 1 7 |numberotscans
12: registerCalbacks

15 prestart |

16; start

17: periodicTimer while(~aliScansT

18: gethuminputScansAvaitable

1% read(pData, Nx blockSize)

1

25 stop

27: periodTimer whie(~isDone)

30; isDeviceDone

36 term

33: unregisterCallbacks

34 unconfigureStream

!

37 term !

e

38 delete

39: deletethis)

ansferred)

5 state and Sequence Diagrams

See Also

More About

. “Streaming API Reference” on page 4-23
. “State Machine Diagram” on page 5-2
. “Foreground Streaming Sequences” on page 5-5

5-20

Sequence for Errors and Exceptions

Sequence for Errors and Exceptions

This sequence diagram summarizes the DataMissed events and error handling.

| 1 i) |

|
{Unintiaizedstate}

2 addistener(/DataAvailable') channeiGroupHandle

transferDirection

isPolin
3 addAnaloginputChanncl ot _ — FlruminpiChannels
Snew . — I |umOLtpuChamnels
& int
7. addistener(npuistream, DetaAfiterr) :
I
& addistener(asyncioChannel, Custorr) |
I
! |blocksize
9 startBackground | {SEr e
10: open 11: configureStrgam— — — |~ |numherofscans
e i
12 registerCalliacks
13 InputStream.fush T
14; execute("start’) 15 prestart !
16: start
T
17 periodicTimer while(~aliScansécajired)
I
18: gethuminputScansAvaiable |
" . 19 readpData, M blockSize) ice
20 CustomEvent('Dataltitien’) oty the DAG Session
21: DataAvailsble _ ="
22 stop
23 CustomEvent‘Datahlissed)
WaltingFarStop = true
itingFof DoneStat
The exeeute("stop") in response to the eror (WatingFeponestate) T
‘evert is & blocking synchronous call, thet can !
happen at any time during the . I
"WaitingForDoneState” or “WatingForStopState” 24 periodicTimer whis(-isDone) |
T~ I
25 -execute("stop") 26; isDevieeDs | |The "WattingForStopState" may be skipped
entirely, unless the execute("stop") happens on
the last teration of the'WaitForDoneState", in
” ‘which case the "stop", which would have been
27 while(~inputSteam isDataDone) Iblocked behind & mutex, runs one teration inthe
Ll aitingF orStopState” before transtioning o the
- "ReadyState"
py —

26: close 29: unregisterCallbacks
30: unconfigureSream
31 clear 32 tem !
33 term !
1
34: delete |

35 delete(this)

———
|

5-21

5 state and Sequence Diagrams

5-22

See Also

More About

“Channel Groups” on page 3-14

“Errors and Exceptions” on page 3-12

“State Machine Diagram” on page 5-2
“Foreground Streaming Sequences” on page 5-5
“Background Streaming Sequences” on page 5-12

Functions — Alphabetical List

6 Functions — Alphabetical List

6-2

buildAdaptor

Build adaptor for third-party data acquisition interface

Syntax

daq.sdk.utility.mex.buildAdaptor(adaptorName, customFunc,srcPath,
outputPath)

daq.sdk.utility.mex.buildAdaptor(adaptorName, customFunc,srcPath,
outputPath,vendorLib)

script = daq.sdk.utility.mex.buildAdaptor()

Description

dag.sdk.utility.mex.buildAdaptor(adaptorName, customFunc,srcPath,
outputPath) builds an adaptor for enumerating, configuring, and streaming data to and
from a data acquisition device driver.

Note This function requires that your system is configured with Microsoft Visual Studio
2013 or later.

daq.sdk.utility.mex.buildAdaptor(adaptorName, customFunc,srcPath,
outputPath,vendorLib) allows you to specify a custom library for the build.

script = daq.sdk.utility.mex.buildAdaptor() returns the script used for
the build. This can be useful for diagnostic purposes.

Examples

Build Custom Adaptor

Build the custom adaptor named MyAdaptor.

buildAdaptor

daqg.sdk.utility.mex.buildAdaptor('MyAdaptor', ‘custom my', ...
'c:\adaptors\sdk\dagadaptor', 'c:\adaptors\sdk\bin\win64');

View Adaptor Build Script

Build the custom adaptor and return the build script.

scr = daq.sdk.utility.mex.buildAdaptor('MyAdaptor','custom my"',
'c:\adaptors\sdk\dagadaptor', 'c:\adaptors\sdk\bin\win64');
scr

scr =

'mex 'C:\adaptors\daqsdk\src\dagadaptor\MyAdaptor\Shared\dispatcher.cpp'
'C:\adaptors\dagsdk\src\dagadaptor\MyAdaptor\Shared\dagadaptor.cpp'
'C:\adaptors\dagsdk\src\dagadaptor\MyAdaptor\Shared\dagstream.cpp'
'C:\adaptors\dagsdk\src\dagadaptor\MyAdaptor\Shared\adaptorfactory.cpp'
'C:\adaptors\dagsdk\src\dagadaptor\MyAdaptor\MyAdaptor.cpp'
'C:\adaptors\dagsdk\src\dagadaptor\MyAdaptor\dagstream analog.cpp'
'C:\adaptors\dagsdk\src\dagadaptor\MyAdaptor\custom my.cpp"'

-I'C:\Program Files\MATLAB\R2017\toolbox\dag\dagsdk\src\dagadaptor\Shared'
-I'C:\Program Files\MATLAB\R2017\toolbox\dag\dagsdk\src\include'
-I'C:\adaptors\daqgsdk\src\dagadaptor\MyAdaptor' -DADAPTOR=MyAdaptor
-DDAQADAPTOR EXPORT -DINT16 MIN=-32768 -DINT16 MAX=32767 -output MyAdaptor
-outdir 'C:\adaptors\daqsdk\bin\win64' -v -g COMPFLAGS='$COMPFLAGS -W3'
CXXFLAGS="'$CXXFLAGS -std=c++11"'"'

You can save this script to a file and further modify it. You can run your modified script
with eval or daq.sdk.utility.mex.runBuildScript. For syntax options, type

help daq.sdk.utility.mex.runBuildScript

Build with Custom Library

Use the custom library MyLibrary for building an adaptor.

pathToHeaderAndLib = 'C:\libraries\MyLibrary'
myLibrary.HeaderPath = fullfile(pathToHeaderAndLib, 'include');
myLibrary.LibPath = fullfile(pathToHeaderAndLib, 'lib");
myLibrary.LibName = 'MyLibrary';

6 Functions — Alphabetical List

6-4

buildAdaptor('DemoAdaptor', 'custom demo',adaptorPath,outputPath,myLibrary);

Input Arguments

adaptorName — Name of adaptor
char vector | string

Name of the adaptor, specified as a character vector or string.
Example: 'DemoAdaptor'

Data Types: char | string

customFunc — File containing custom functions
char vector or string

Name of the file containing the source code for custom functions, specified as a character
vector or string. The file must be in the folder identified by srcPath.

Example: 'custom demo.cpp'

Data Types: char | string

srcPath — Path to adaptor source folder
char vector or string

Path to adaptor source folder, specified as a character vector or string.
Example: 'c:\temp\sdk\dagadaptor'
Data Types: char | string

outputPath — Path to adaptor MEX-file
char vector or string

Path to generated adaptor MEX-file location, specified as a character vector or string.
Example: 'c:\temp\sdk\bin\win64'
Data Types: char | string

vendorLib — Vendor library locations
struct

buildAdaptor

Vendor library locations, specified as a structure containing these three fields:

* HeaderPath — a character vector specifying the path to the vendor header.
* LibPat — a character vector specifying the path to the vendor static library.

* LibName — a character vector specifying the name of the static library, without file
extension.

Data Types: struct

Output Arguments

script — Build script
character vector

Build script returned as a character vector. This script indicates what the function ran to
build the adaptor.

See Also

Topics
“Create Your Adaptor from the Demo Adaptor” on page 3-2

Introduced in R2017a

6 Functions — Alphabetical List

6-6

enableDemoAdaptorDiscovery

Allow SDK demo adaptor to be enabled for device discovery and usage

Syntax

dag.sdk.utility.enableAdaptorDiscovery

Description

dag.sdk.utility.enableAdaptorDiscovery allows the SDK demo adaptor to be
found and used in a data acquisition session. The adaptor is enabled until the end of the

MATLAB session or until execution of daqreset.

Examples

Enable the Demo Adaptor

Enable the demo adaptor and view its devices.

daqgreset;
daq.sdk.utility.enableDemoAdaptorDiscovery;
devices = daq.getDevices

devices =
Data acquisition devices:
index Vendor Device ID Description

1 mw MWDev0 MathWorks MwW314159

enableDemoAdaptorDiscovery

2 mw MwWDev1 MathWorks MwW314159
3 mw MwWDev?2 MathWorks MW628318

See Also

Functions
daqreset

Topics

“Demo Adaptor Description” on page 2-2

“Enable the Demo Adaptor” on page 2-5

“Session Workflows with the Demo Adaptor” on page 2-6
“Create Your Adaptor from the Demo Adaptor” on page 3-2

Introduced in R2017a

